

A proteomics approach to understanding nicotine-dependent signaling

Marina Picciotto and Angela Lee Depts. of Psychiatry, Neuroscience & Pharmacology Yale University School of Medicine

Nicotine activates Nicotinic Acetylcholine Receptors

- Pentameric ligand-gated cation channels; receptors for acetylcholine
- Many different subunits:
 - α2-10, β2-4 in brain
 - Differ in agonist binding specificities, channel properties, Ca-permeability, expression levels, localization, etc.
 - Most common in brain: $\alpha 7$ and $\alpha 4\beta 2$

nAChR Dynamics and Phosphorylation

Phosphorylation of muscle-type nAChRs involved in receptor localization and desensitization

> More recent studies of $\alpha 4$:

- Several putative PO4 sites identified
- PKA activation → receptor maturation/ upregulation in cell culture
- PKC phosphorylation promotes recovery from desensitization

- nAChR phosphorylation has not been demonstrated in vivo
- β2 phosphorylation has not been demonstrated
- Other important brain kinases not evaluated

Exploring the Nicotinic Acetylcholine Receptor-associated Proteome with iTRAQ and Transgenic Mice

Tristan D. McClure-Begley ^{1,2}, Kathy L. Stone ³, Michael J. Marks ^{2,4}, Sharon R. Grady ², Christopher M. Colangelo ^{3,5}, Jon M. Lindstrom ⁶, Marina R. Picciotto ^{1,*}

McClure-Begley et al. GPB. 2013 Aug;11(4):207-18.

Tristan McClure-Begley

Proteins significantly correlated with gene dose

- \geq <u>17 proteins</u> identified as interactors of β 2 nAChR in mouse brain
- CaMKII isoforms also found in human cortical tissue from smokers and non-smokers (McClure-Begley, 2016)

Correlation coefficient N F score P value		Protein	UniProtKB accession No.	Cellular compartment	Previously identified?	Molecular function							
0.748	12	20.268	0	Glial fibrillary acidic protein	P03995	Cytoplasm	No	Protein binding, structural molecule					
0.858	18	44.542	0	nAChR subunit a4	O70174	Cell junction	No	Neuro-transmitter receptor					
1	18	-	0	nAChR subunit β2	ubunit β2 Q9ERK7 Cell junction No Neuro-transmitter r		Neuro-transmitter receptor						
0.652	18	11.844	0.003	Neurofilament light poly peptide	P08551	Growth cone	No	Protein binding, structural molecule					
0.645	18	11.404	0.004	Actin-related protein 3	Q99JY9	Cytoplasm	No	Nucleotide binding, protein binding					
0.637	18	10.904	0.004	Calcium/calmodulin-dependent protein kinase type II subunit α	P11798	Cytoplasm	No	Transferase, nucleotide binding, protein binding					
0.917	18	21.235	0.01	Calcium/calmodulin-dependent protein	Q923T9	Sarcoplasmic	No	Transferase, nucleotide binding, protein binding					
				kinase type II subunit γ		reticulum membrane							
0.57	18	7.681	0.014	F-activ									
0.562	18	7.386	0.015	Thyro recept. Calcium/c	almod	ulin-depo	ender	nt protein nding					
0.665	12 18	7.933 6.563	0.018	$\begin{array}{c} \text{Transe}\\ \text{Ecton}\\ \text{average} \end{array} \qquad $									
				family member 6									
0.519	18	5.884	0.027	Spectrin β chain, brain 1	Q62261	Cytoplasm	No	Protein binding, lipid binding, structural molecule activity					
0.856	6	11.009	0.029	Ras-related protein Rap-1A	P62835	Cell membrane	No	Hydrolase activity, protein binding, nucleotide binding					
0.512	18	5.695	0.03	Myosin-10	Q61879	Cytoplasm	No	Protein binding, nucleotide binding, hydrolase					
0.506	18	5.496	0.032	Myelin proteolipid protein	P60202	Cell membrane	No	Structural molecular, protein binding					
0.502	18	5.378	0.034	Spectrin a chain, brain	P16546	Cytoplasm	Yes	Hydrolase, protein binding, nucleotide binding					
0.493	18	5.149	0.037	Tubulin β-3 chain	Q9ERD7	Cytoplasm	No	Hydrolase, nucleotide binding, structural molecular, protein binding, peptide					

Table 3 Proteins with their abundances significantly positively correlated with that of \$\beta 2 nAChR subunit across genotypes

Tristan McClure-Begley

McClure-Begley et al. GPB. 2013 Aug;11(4):207-18.

Confirmation of CaMKII – $\alpha 4\beta 2^*$ nAChR interaction by co-IP

- \rightarrow Incubate lysate with resin overnight at 4C
- \rightarrow Separate resin on magnet and remove supernatant (unbound fraction)
- \rightarrow Thoroughly wash resin (3X with high salt and 0.1% triton X)
- \rightarrow Elute "bound" fraction by boiling resin in SDS
- \rightarrow Run "input" and "bound" fractions on gel; WB for CaMKII

Megan Miller

Approach: membrane prep and IP

Approach: Tandem MS analysis of phosphorylation

- \rightarrow LC MS/MS \rightarrow peptide identifications >96% identical
- \rightarrow Coverage of $\alpha 4\beta 2$ nAChR subunits = 35-50%
- \rightarrow 80-95% coverage in M3/M4 loop region

Does CaMKIIα phosphorylate α4β2 nAChRs?

Megan Miller and Rashaun Wilson

What are the phosphorylation sites on $\alpha 4\beta 2$ nAChRs?

	HEK	Cells		In Vitro		In Vivo			
	Basal	CaMKII	PPase resistant	CaMKII	РКА	Saline	Acute Nic	Repeat Nic	
				T417 [*]					
- [S444 [*]					S444 [*]		
[S448 ⁻					S448		
		S468 ⁻		S468 ^{***}					
	S470	S470	S470		S470		S470	S470 ^A	
					S491 [*]	S491			
			S521		S521				
	S530	S530 ^{***}							
	S540	S540	S540						
	S543	S543				S543			
	S563	S563				S563			
α4		299 Y311 A626 S3 S4 279 H333 F604	α4	F247 P299 Y S1 S2 Y268 L279 H	311 A626 33 S4 333 F604		F247 P299 S1 S2 Y268 L279-	Y311 A626 S3 S4 1333 F604	
Ra	PK shaun V	S47 A in vitro Nilson	HEK cells+CaMKIIa / CaMKIIa in vitro			S448 S470 Acute Nicotine <i>in vivo</i>			

Megan Miller and Rashaun Wilson

What is the consequence of nicotine exposure on the proteome in brain areas involved in reinforcement?

Wildtype NAc Chronic Nicotine Beta-2 KO NAc Chronic Nicotine

Rebecca Steiner

Effects of Nicotine on the VTA Proteome in Male and Female Mice

Women are more vulnerable to nicotine addiction

Criteria for Substance Dependence (DSM-IV)

- Addiction Koob & Le Moal. *Neuropsychopharm* (2001)
- Teen girls > boys in nicotine dependence milestones (Sylvestre et al. Am J Epidemiol. 2018)

• Female rats self-administer more nicotine, more quickly at lower doses (Flores et al. *Physiol Behav.* 2017)

- 31% lower odds of successfully quitting, and 44% greater odds of relapse (Smith et al. *NTR.* 2015; Weinberger et al. *Addiction.* 2014)
- Higher progressive ratio breakpoints in self-administration (Donny et al. *Psychopharm (Berl.).* 2000)

Sex differences in nicotine-induced alterations

nAChR upregulation

Mesolimbic function

B.J. Caldarone et al. / Neuroscience Letters 439 (2008) 187-191

Cosgrove et al. Arch Gen Psychiatry. 2012;69(4):418-427

Figure 1. *a*, Probability of activation maps for male and female smokers. Note the striking difference in the right ventral striatum. *b*, The mean (and SE) number of voxels activated during smoking in the right ventral striatum for male and female smokers. A permutation test indicated that the mean sex difference in number of activated voxels in the right ventral striatum was highly significant (*p* = 0.01).

Cosgrove, Wang et al. • Dopamine Signature of Smoking J. Neurosci., December 10, 2014 • 34(50):16851–16855

No sex comparisons in proteomics studies

Sex differences in nicotine-induced alterations in mesocorticolimbic system

Experimental Design

Shahid Mansuri

Protein extraction, digestion TMT 10-plex isobaric labeling

Experimental Design

Series of fragment ions for peptide identification

Adapted from Rauniyar & Yates, J Proteome Res. 2014

Results

Identified Proteins (3431)

Differentially significant (ANOVA) Proteins (**2013**)

Shahid Mansuri

Pairwise Comparisons

- 1. Male Nic (MN) vs. Male Sacc (MS)
- 2. Female Nic (FN) vs. Female Sacc (FS)
- 3. Male Sacc (MS) vs. Female Sacc (FS)

Shahid Mansuri

Results of Pairwise Comparisons: Hierarchical clustering

Future directions

- Validate findings
 - Western blot
 - Planned comparisons of control group male vs female, chronic vs sub-chronic
- Other brain regions collected (NAc, mPFC)
- Sub-chronic nicotine administration

Acknowledgements

Picciotto Lab

Marina Picciotto Megan Miller Tristan McClure-Begley **Rebecca Steiner** Yann Mineur Wenliang Zhou **Rick Crouse** Nadia Jordan-Spasov Sam Sheppard Ash Islam Kathrine Maibom Ashna Aggarwal Yaging Huang

<u>Angus Nairn</u>

Shahid Mansuri Veronica Musante Becky Carlyle

<u>Yale/NIDA</u> <u>Neuroproteomics</u> Center

Angus Nairn Kenneth Williams Tukiet Lam Rashaun Wilson Jean Kanyo

Thesis Committee

Christopher Pittenger Ralph DiLeone Jane Taylor Michael Nitabach

<u>INP</u>

Charlie Greer Carol Russo

<u>MSTP</u>

Barbara Kazmierczak Cheryl DeFilippo Sue Sansone

<u>Funding</u>

Yale/NIDA Neuroproteomics Center NIDA NRSA F30 (AML) BSTP Training Grant (MBM)

Median normalization

Shahid Mansuri

Reproducibility of the samples: Multi scatter plot: Expression values of each sample are compared to all others. Correlation calculated as Pearson coefficient

Sub-chronic administration

- CPP-inducing paradigm (3/6 days, alternating)
 - Male: 0.5 mg/kg nicotine, s.c.
 - Female: 0.75 mg/kg nicotine, s.c.
- VTA, NAc, mPFC

Proteomic studies of nicotine-induced alterations

RESEARCH ARTICLE

Nicotine

Proteomics

Multiplexed Isobaric Tag-Based Profiling of Seven Murine Tissues Following In Vivo Nicotine Treatment Using a Minimalistic Proteomics Strategy

Joao A. Paulo,* Mark P. Jedrychowski, Edward T. Chouchani, Lawrence Kazak, and Steven P. Gygi*

The influence of chronic nicotine treatment on proteins expressed in the mouse hippocampus and cortex

Kenji Matsuura^a, Mieko Otani^b, Masaoki Takano^b, Keiichi Kadoyama^a, Shogo Matsuyama^{a,*}

^a Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan ^b Department of Life Sciences Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan

Techniques and Methods

Molecular Histochemistry Identifies Peptidomic Organization and Reorganization Along Striatal Projection Units

Akitoyo Hishimoto, Hiroko Nomaru, Kenny Ye, Akira Nishi, Jihyeon Lim, Jennifer T. Aguilan, Edward Nieves, Gina Kang, Ruth Hogue Angeletti, and Noboru Hiroi 6/8 male only 1/8 female only 1/8 sex not reported